

First Semester M.Tech. Degree Examination, June/July 2015 Finite Element Method

Time: 3 hrs.

Note: Answer any FIVE full questions.

Max. Marks: 100

- a. Derive an equation for heat conduction in Cartesian coordinates by applying the energy conservation law to differential control volume. (10 Marks)
 - b. Explain the steps involved involving the continuum problem by finite element method.

 (10 Marks)

2 a. Derive the element shape function and temperature derivatives for 1D quadratic element.

- b. A I-D quadratic element is used to approximate temperature distribution in a long fin the solution gives the temperature at 3 nodes as 100°C. 90°C and 80°C at a distance of 10cm, 15cm and 20cm respectively from the origin. Calculate the temperature and temperature gradient at a location of 12cm from origin.

 (08 Marks)
- 3 a. Derive the shape function and temperature derivatives of a 2-D linear triangular element.
 (10 Marks)
 - b. Derive shape function and stiffness matrix for CST. (10 Marks)
- 4 a. Explain penalty formulation of fluid flow problems. (08 Marks)
 - b. A Fin of cross section 2mm × 3mm × 20mm long is attached to a base at 100°C. The fin is exposed to ambient air at 25°C. Hat transfer conductivity of fin material is 200W/m°c. Determine the temperature distribution heat dissipation and efficiency of the fin using

 (i) 1 D linear element (ii) 2 D linear element. (12 Marks)
- A composite wall consists of three materials as shwn in Fig Q5. The outer temperature is $T_0 = 20$ °C, convective heat transfer temperature is the inner surface of the wall with $T_{\infty} = 800$ °C and $h = 25 \text{W/m}^2$ °C. Determine the temperature distribution in the wall.

 (20 Marks)

6 a. Explain the application of Galerkin method for transient equation subjected to approximate boundary and initial conditions. (10 Marks)

- b. Explain i) Inverse heat conduction problems. ii) Application of FEM to solidification problems. (10 Marks)
- 7 a. A axial load of 300kN is applied at 20°C to rod as shown in Fig.27. The temperature is then raised to 60°C. Calculate
 - (i) Assemble K and F matrices
 - (ii) Nodal displacements and stresses in each element.

(14 Marks)

b. Obtain elemental mass matrix for ID element.

(06 Marks)

- 8 Write short notes on:
 - a) Diffusion problems
- b) Transient convection
- c) Convergence
- d) Characteristics based split scheme.

(20 Marks)

* * * *